Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci ; 345: 122604, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38580196

RESUMEN

AIMS: Intestinal barrier dysfunction is the initial and propagable factor of sepsis in which acute kidney injury (AKI) has been considered as a common life-threatening complication. Our recent study identifies the regulatory role of Pellino1 in tubular death under inflammatory conditions in vitro. The objective of our current study is to explore the impact of Pellino1 on gut-kidney axis during septic AKI and uncover the molecular mechanism (s) underlying this process. MATERIALS AND METHODS: Immunohistochemistry (IHC) was conducted to evaluate Pellino1 and NOD-like receptor thermal protein domain associated protein 3 (NLRP3) levels in renal biopsies from critically ill patients with a clinical diagnosis of sepsis. Functional and mechanistic studies were characterized in septic models of the Peli-knockout (Peli1-/-) mice by histopathological staining, enzyme-linked immunosorbent assay (ELISA), flow cytometry, immunofluorescence, biochemical detection, CRISPR/Cas9-mediated gene editing and intestinal organoid. KEY FINDINGS: Pellino1, together with NLRP3, are highly expressed in renal biopsies from critically ill patients diagnosed with sepsis and kidney tissues of septic mice. The Peli1-/- mice with sepsis become less prone to develop AKI and have markedly compromised NLRP3 activation in kidney. Loss of Peli1 endows septic mice refractory to intestinal inflammation, barrier permeability and enterocyte apoptosis that requires stimulator of interferons genes (STING) pathway. Administration of STING agonist DMXAA deteriorates AKI and mortality of septic Peli1-/- mice in the presence of kidney-specific NLRP3 reconstitution. SIGNIFICANCE: Our studies suggest that Pellino1 has a principal role in orchestrating gut homeostasis towards renal pathophysiology, thus providing a potential therapeutic target for septic AKI.


Asunto(s)
Lesión Renal Aguda , Sepsis , Humanos , Animales , Ratones , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad Crítica , Riñón/metabolismo , Lesión Renal Aguda/metabolismo , Sepsis/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
2.
Heliyon ; 10(7): e26791, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38586373

RESUMEN

Efferocytosis of apoptotic neutrophils (PMNs) by macrophages is helpful for inflammation resolution and injury repair, but the role of efferocytosis in intrinsic nature of macrophages during septic acute kidney injury (AKI) remains unknown. Here we report that CD47 and signal regulatory protein alpha (SIRPα)-the anti-efferocytotic 'don't eat me' signals-are highly expressed in peripheral blood mononuclear cells (PBMCs) from patients with septic AKI and kidney samples from mice with polymicrobial sepsis and endotoxin shock. Conditional knockout (CKO) of SIRPA in macrophages ameliorates AKI and systemic inflammation response in septic mice, accompanied by an escalation in mitophagy inhibition of macrophages. Ablation of SIRPA transcriptionally downregulates solute carrier family 22 member 5 (SLC22A5) in the lipopolysaccharide (LPS)-stimulated macrophages that efferocytose apoptotic neutrophils (PMNs). Targeting SLC22A5 renders mitophagy inhibition of macrophages in response to LPS stimuli, improves survival and deters development of septic AKI. Our study supports further clinical investigation of CD47-SIRPα signalling in sepsis and proposes that SLC22A5 might be a promising immunotherapeutic target for septic AKI.

3.
Life Sci ; 322: 121653, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37011875

RESUMEN

AIMS: Inflammation-coupling tubular damage (ICTD) contributes to pathogenesis of septic acute kidney injury (AKI), in which insulin-like growth factor-binding protein 7 (IGFBP-7) serves as a biomarker for risk stratification. The current study aims to discern how IGFBP-7 signalling influences ICTD, the mechanisms that underlie this process and whether blockade of the IGFBP-7-dependent ICTD might have therapeutic value for septic AKI. MATERIALS AND METHODS: In vivo characterization was carried out in B6/JGpt-Igfbp7em1Cd1165/Gpt mice subjected to cecal ligation and puncture (CLP). Transmission electron microscopy, immunofluorescence, flow cytometry, immunoblotting, ELISA, RT-qPCR and dual-luciferase reporter assays were used to determine mitochondrial functions, cell apoptosis, cytokine secretion and gene transcription. KEY FINDINGS: ICTD augments the transcriptional activity and protein secretion of tubular IGFBP-7, which enables an auto- and paracrine signalling via deactivation of IGF-1 receptor (IGF-1R). Genetic knockout (KO) of IGFBP-7 provides renal protection, improves survival and resolves inflammation in murine models of cecal ligation and puncture (CLP), while administering recombinant IGFBP-7 aggravates ICTD and inflammatory invasion. IGFBP-7 perpetuates ICTD in a NIX/BNIP3-indispensable fashion through dampening mitophagy that restricts redox robustness and preserves mitochondrial clearance programs. Adeno-associated viral vector 9 (AAV9)-NIX short hairpin RNA (shRNA) delivery ameliorates the anti-septic AKI phenotypes of IGFBP-7 KO. Activation of BNIP3-mediated mitophagy by mitochonic acid-5 (MA-5) effectively attenuates the IGFBP-7-dependent ICTD and septic AKI in CLP mice. SIGNIFICANCE: Our findings identify IGFBP-7 is an auto- and paracrine manipulator of NIX-mediated mitophagy for ICTD escalation and propose that targeting the IGFBP-7-dependent ICTD represents a novel therapeutic strategy against septic AKI.


Asunto(s)
Lesión Renal Aguda , Sepsis , Somatomedinas , Ratones , Animales , Mitofagia/fisiología , Lesión Renal Aguda/metabolismo , Sepsis/metabolismo , Inflamación/complicaciones , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo
5.
Biomed Res Int ; 2021: 6636621, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34222479

RESUMEN

OBJECTIVE: To observe the protective effect of AC-YVAD-CMK on sepsis-induced acute kidney injury in mice and to explore its possible mechanisms primarily. METHODS: Eighteen male C57BL/6 mice were randomly divided into sham-operated group (Control), cecal ligation and puncture group (CLP), and CLP model treated with AC-YVAD-CMK group (AC-YVAD-CMK) (n = 6 in each group). Mice were sacrificed at 24 h after operation, and blood and kidney tissue samples were collected for analyses. Histologic changes were determined microscopically following HE staining. The expression of Ly-6B and CD68 was investigated using immunohistochemistry. Serum concentrations of creatinine (sCR) and blood urea nitrogen (BUN) were measured. Serum levels of interleukin-1ß (IL-1ß), interleukin-18 (IL-18), TNF-α, and interleukin-6 (IL-6) were determined by ELISA. The expressions of Caspas-1, NLRP-1, IL-1ß, and IL-18 in renal tissues were investigated using Western blot. Immunofluorescence staining was used to detect the expression of GSDMD protein in renal tissues. RESULTS: AC-YVAD-CMK treatment significantly alleviates sepsis-induced acute kidney injury, with decreased histological injury in renal tissues, suppresses the accumulation of neutrophils and macrophages in renal tissues, and decreased sCR and BUN level (P < 0.05). Attenuation of sepsis-induced acute kidney injury was due to the prohibited production of inflammatory cytokines and decrease expression of Caspas-1, NLRP-1, IL-1ß, and IL-18 in renal tissues. In addition, AC-YVAD-CMK treatment significantly reduced the expression of GSDMD in renal tissues compared to those observed in controls (P < 0.05). CONCLUSIONS: We demonstrated a marked renoprotective effect of caspase-1-inhibitor AC-YVAD-CMK in a rat model of sepsis by inhibition of pyroptosis.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Clorometilcetonas de Aminoácidos/farmacología , Caspasa 1/metabolismo , Inhibidores de Caspasas/farmacología , Piroptosis/efectos de los fármacos , Sepsis/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Animales , Antígenos CD/biosíntesis , Antígenos de Diferenciación Mielomonocítica/biosíntesis , Nitrógeno de la Urea Sanguínea , Creatinina , Citocinas/metabolismo , Interleucina-18/biosíntesis , Interleucina-1beta/biosíntesis , Interleucina-6/biosíntesis , Riñón/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neutrófilos/metabolismo , Sepsis/metabolismo
6.
Kaohsiung J Med Sci ; 36(10): 817-824, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32609950

RESUMEN

MicroRNAs (miRNAs) have been reported as a diagnostic markers for sepsis, and miRNAs have also been found to play a regulatory role in sepsis-induced acute kidney injury (AKI). However, the regulatory effect and mechanism of miR-34b-3p on AKI remains elusive. First, sepsis mice with AKI was established via cecal ligation puncture (CLP), and verified through hematoxylin-eosin staining, determination of tumor necrosis factor-α (TNF-α), interleukin (IL)-6/1ß and serum levels of alanine aminotransferase (ALT) and blood urea nitrogen (BUN). Data showed that CLP-induced mice demonstrated increased ALT, BUN, TNF-α, IL-1ß, and IL-6 with injured pathological morphology of kidney tissues. Second, lipopolysaccharide (LPS) treatment elevated TNF-α, IL-1ß, and IL-6 contents in rat mesangial cells (RMCs). MiR-34b-3p was downregulated in both CLP-induced mice and LPS-induced RMCs. Third, target gene of miR-34b-3p was verified as ubiquitin-like protein 4A (UBL4A), and UBL4A was upregulated in LPS-induced RMCs. MiR-34b-3p could inhibit UBL4A expression and decreased TNF-α, IL-1ß and IL-6 contents in LPS-induced RMCs, while overexpression of UBL4A counteract with the suppressive effects of miR-34b-3p on the protein expression. Moreover, transcriptional activity of UBL4A-induced NF-κB was decreased by miR-34b-3p. Lastly, in vivo injection of miR-34b-3p agomir improved CLP-induced kidney tissues injury with declined ALT, BUN, TNF-α, IL-1ß, IL-6, and UBL4A. In general, miR-34b-3p overexpression could alleviate AKI in sepsis mice through downregulation of UBL4A/NF-κB, providing potential therapeutic strategy for AKI.


Asunto(s)
Sepsis/metabolismo , Ubiquitinas/metabolismo , Lesión Renal Aguda/metabolismo , Animales , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Sepsis/genética , Ubiquitinas/genética
7.
Mol Med Rep ; 21(4): 1872-1880, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31545412

RESUMEN

Lipopolysaccharide (LPS) induces stress inflammation and apoptosis. Pulmonary epithelial cell apoptosis, which accelerates the progression of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), is the leading cause of mortality in patients with ALI/ARDS. The nephroblastoma overexpressed protein (CCN3), an inflammatory modulator, is reported to be a biomarker in ALI. Using the LPS-induced ALI model, this study investigated the expression of CCN3 and its possible molecular mechanism in lung alveolar epithelial cell inflammation and apoptosis. Our data revealed that LPS treatment greatly increased the level of CCN3 in A549 cells. The A549 cells were transfected with specific CCN3 small interfering RNA (siRNA) using transfection reagent. CCN3 siRNA not only largely attenuated the expressions of the inflammatory cytokines interleukin (IL)-1ß and transforming growth factor (TGF)-ß1, but also reduced the apoptotic rate of the AEC II cells and affected the expressions of the apoptosis-associated proteins (Bcl-2 and caspase-3). Furthermore, CCN3 knockdown greatly inhibited the activation of nuclear factor-κB p65 in A549 cells. In addition, TGF-ß/p-Smad inhibitor (TP0427736) and NF-κB inhibitor (PDTC) significantly attenuated the expression level of CCN3 in A549 cells. In conclusion, our data indicated that CCN3 siRNA affected downstream signal through TGF-ß/ p-Smad or NF-κB pathway, leading to the inhibition of cell inflammation and apoptosis in human alveolar epithelial cells.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Células Epiteliales Alveolares/metabolismo , Apoptosis/genética , Proteína Hiperexpresada del Nefroblastoma/metabolismo , Células A549 , Lesión Pulmonar Aguda/genética , Caspasa 3/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Inflamación/genética , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Lipopolisacáridos/farmacología , Pulmón/metabolismo , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Proteína Hiperexpresada del Nefroblastoma/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Interferente Pequeño , Transducción de Señal/genética , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
8.
Int J Med Sci ; 15(13): 1433-1442, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30443162

RESUMEN

Renal tubule cell apoptosis plays a pivotal role in the progression of chronic renal diseases. The previous study indicates that Sirolimus is effective on unilateral ureteral obstruction (UUO)-induced renal fibrosis. However, the role of Sirolimus in renal tubular apoptosis induced by UUO has not yet been addressed. The aim of this study was to determine the role of Sirolimus in renal tubular apoptosis induced by UUO. Male Sprague-Dawley rats were divided into three groups, sham-operated rats, and after which unilateral ureteral obstruction (UUO) was performed: non-treated and sirolimus-treated (1mg/kg). After 4, 7 and 14 d, animals were sacrificed and blood, kidney tissue samples were collected for analyses. Histologic changes and interstitial collagen were determined microscopically following HE and Masson's trichrome staining. The expression of PCNA was investigated using immunohistochemistry and the expression of Bcl-2, Bax, caspase-9, and caspase-3 were investigated using Western blot in each group. Tubular apoptotic cell deaths were assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. Sirolimus administration resulted in a significant reduction in tubulointerstitial fibrosis scores. After UUO, there was an increase in tubular and interstitial apoptosis in untreated controls as compared to Sirolimus treatment rats (P<0.05). In addition, the expression of PCNA, Bcl-2, Bax, caspase-9, and caspase-3 in obstructed kidney was characterized by immunohistochemistry and Western blot analyses demonstrating that sirolimus treatment significantly reduced PCNA, Bax, caspase-9 and cleaved caspase-3 expression compared to those observed in controls (P<0.05), whereas, Bcl-2 in the obstructed kidney were decreased in untreated controls compared to Sirolimus treatment rats subjected to the same time course of obstruction (P<0.05). We demonstrated a marked renoprotective effect of sirolimus by inhibition of UUO-induced renal tubular apoptosis in vivo.


Asunto(s)
Sirolimus/uso terapéutico , Obstrucción Ureteral/tratamiento farmacológico , Obstrucción Ureteral/metabolismo , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Riñón/efectos de los fármacos , Riñón/metabolismo , Masculino , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas
9.
Zhong Yao Cai ; 38(3): 481-4, 2015 Mar.
Artículo en Chino | MEDLINE | ID: mdl-26495646

RESUMEN

OBJECTIVE: To detect flavonoids from Cycas revoluta leaves by means of Chemiluminescence-Flow Injection Analysis (CL-FIA). METHODS: Under alkaline condition, a CL-FIA method was established to determine flavonoids from leaves of Cycas revoluta on the basis of inhibiting effect of flavonoids to the Luminol-H2O2-Cu2+ chemiluminescence system and the reversed flow injection technique. RESULTS: In the range of 2. 0 x 10(-6) ~ 1. 0 x 10(-3) mg/mL, the decrease of CL intensity was correlated with flavonoids concentration while the detection limit was 0. 0265 µg/mL. Under the optimized conditions, the flavonoids of Cycas revoluta leaves were detected with its average rate reaching 1. 61% and RSD 1. 32%. CONCLUSION: Through the interference test and compared with the data of CL-FIA and UV, it is concluded that CL-FIA can be used in the analysis and detection of flavonoids from Cycas revoluta leaves.


Asunto(s)
Cycas/química , Flavonoides/análisis , Hojas de la Planta/química , Análisis de Inyección de Flujo , Límite de Detección , Mediciones Luminiscentes , Luminol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...